67 research outputs found

    Interval type-2 defuzzification using uncertainty weights

    Get PDF
    One of the most popular interval type-2 defuzzification methods is the Karnik-Mendel (KM) algorithm. Nie and Tan (NT) have proposed an approximation of the KM method that converts the interval type-2 membership functions to a single type-1 membership function by averaging the upper and lower memberships, and then applies a type-1 centroid defuzzification. In this paper we propose a modification of the NT algorithm which takes into account the uncertainty of the (interval type-2) memberships. We call this method the uncertainty weight (UW) method. Extensive numerical experiments motivated by typical fuzzy controller scenarios compare the KM, NT, and UW methods. The experiments show that (i) in many cases NT can be considered a good approximation of KM with much lower computational complexity, but not for highly unbalanced uncertainties, and (ii) UW yields more reasonable results than KM and NT if more certain decision alternatives should obtain a larger weight than more uncertain alternatives

    Soft Data Modeling via Type 2 Fuzzy Distributions for Corporate Credit Risk Assessment in Commercial Banking

    Get PDF
    The work reported in this paper aims to present possibility distribution model of soft data used for corporate client credit risk assessment in commercial banking by applying Type 2 fuzzy membership functions (distributions) for the purpose of developing a new expert decision-making fuzzy model for evaluating credit risk of corporate clients in a bank. The paper is an extension of previous research conducted on the same subject which was based on Type 1 fuzzy distributions. Our aim in this paper is to address inherent limitations of Type 1 fuzzy dis-tributions so that broader range of banking data uncertainties can be handled and combined with the corresponding hard data, which all affect banking credit deci-sion making process. Banking experts were interviewed about the types of soft variables used for credit risk assessment of corporate clients, as well as for providing the inputs for generating Type 2 fuzzy logic membership functions of these soft variables. Similar to our analysis with Type 1 fuzzy distributions, all identified soft variables can be grouped into a number of segments, which may depend on the specific bank case. In this paper we looked into the following segments: (i) stability, (ii) capability and (iii) readiness/willingness of the bank client to repay a loan. The results of this work represent a new approach for soft data modeling and usage with an aim of being incorporated into a new and superior soft-hard data fusion model for client credit risk assessment

    Uncertainty Measurement for the Interval Type-2 Fuzzy Set

    Get PDF
    In this paper, two measures of uncertainty for interval type-2 fuzzy sets are presented, evaluated, compared and contrasted. Wu and Mendel regard the length of the type-reduced set as a measure of the uncertainty in an interval set. Green eld and John argue that the volume under the surface of the type-2 fuzzy set is a measure of the uncertainty relating to the set. For an interval type-2 fuzzy set, the volume measure is equivalent to the area of the footprint of uncertainty of the set. Experiments show that though the two measures give di erent results, there is considerable commonality between them. The concept of invariance under vertical translation is introduced; the uncertainty measure of a fuzzy set has the property of invariance under vertical translation if the value it generates remains constant under any vertical translation of the fuzzy set. It is left unresolved whether invariance under vertical translation is an essential property of a type-2 uncertainty measure

    Service workload patterns for QoS-driven cloud resource management

    Get PDF
    Cloud service providers negotiate SLAs for customer services they offer based on the reliability of performance and availability of their lower-level platform infrastructure. While availability management is more mature, performance management is less reliable. In order to support a continuous approach that supports the initial static infrastructure configuration as well as dynamic reconfiguration and auto-scaling, an accurate and efficient solution is required. We propose a prediction technique that combines a workload pattern mining approach with a traditional collaborative filtering solution to meet the accuracy and efficiency requirements. Service workload patterns abstract common infrastructure workloads from monitoring logs and act as a part of a first-stage high-performant configuration mechanism before more complex traditional methods are considered. This enhances current reactive rule-based scalability approaches and basic prediction techniques by a hybrid prediction solution. Uncertainty and noise are additional challenges that emerge in multi-layered, often federated cloud architectures. We specifically add log smoothing combined with a fuzzy logic approach to make the prediction solution more robust in the context of these challenges

    Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies

    Get PDF
    Item does not contain fulltextOBJECTIVES: To evaluate the accuracy and speed of a novel robotic technique as an aid to perform magnetic resonance image (MRI)-guided prostate biopsies on patients with cancer suspicious regions. METHODS: A pneumatic controlled MR-compatible manipulator with 5 degrees of freedom was developed in-house to guide biopsies under real-time imaging. From 13 consecutive biopsy procedures, the targeting error, biopsy error and target displacement were calculated to evaluate the accuracy. The time was recorded to evaluate manipulation and procedure time. RESULTS: The robotic and manual techniques demonstrated comparable results regarding mean targeting error (5.7 vs 5.8 mm, respectively) and mean target displacement (6.6 vs 6.0 mm, respectively). The mean biopsy error was larger (6.5 vs 4.4 mm) when using the robotic technique, although not significant. Mean procedure and manipulation time were 76 min and 6 min, respectively using the robotic technique and 61 and 8 min with the manual technique. CONCLUSIONS: Although comparable results regarding accuracy and speed were found, the extended technical effort of the robotic technique make the manual technique - currently - more suitable to perform MRI-guided biopsies. Furthermore, this study provided a better insight in displacement of the target during in vivo biopsy procedures.01 februari 201

    Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta - regulation by selective estrogen receptor modulators and importance in breast cancer

    Get PDF
    Estrogens display intriguing tissue-selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer, for menopausal hormone replacement, and for fertility regulation. Certain compounds that act through the estrogen receptor (ER), now referred to as selective estrogen receptor modulators (SERMs), can demonstrate remarkable differences in activity in the various estrogen target tissues, functioning as agonists in some tissues but as antagonists in others. Recent advances elucidating the tripartite nature of the biochemical and molecular actions of estrogens provide a good basis for understanding these tissue-selective actions. As discussed in this thematic review, the development of optimal SERMs should now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at various gene regulatory sites. Cellular, biochemical, and structural approaches have also shown that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coregulator proteins. Growth factors and protein kinases that control the phosphorylation state of the complex also regulate the bioactivity of the ER. These interactions and changes determine the magnitude of the transcriptional response and the potency of different SERMs. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents
    corecore